Circular Formation Control of Multiple Unicycle-Type Agents With Nonidentical Constant Speeds

نویسندگان

  • Zhiyong Sun
  • Georg S. Seyboth
  • Brian D. O. Anderson
چکیده

This paper discusses the problem of controlling formation shapes for a group of nonholonomic unicycle-type agents with constant speeds. The control input is designed to steer their orientations and the aim is to achieve a desired formation configuration for all the agents subject to constant-speed constraints. The circular motion center is adopted as a virtual position for each agent to define the desired formation shape. We consider several different formation design approaches based on different formation specifications under different interaction graphs. In particular, two different formation design approaches, namely, a displacement-based approach and a distance-based approach, are discussed in detail to coordinate constant-speed agents in achieving a desired formation shape with stable circular motions via limited interactions. The communication and measurement requirements for each approach are also discussed. Furthermore, we propose a combined controller to stabilize a formation shape and synchronize the heading of each agent simultaneously. The effectiveness of the proposed formation control schemes is validated by both numerical simulations and real experiments with actual unmanned fixed-wing aircraft.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerging Applications of Control and Systems Theory

In this chapter, we consider coordination control of a group of UAV agents with constant and in general nonidentical speeds. The control input is designed to steer their orientations and the control objective is to achieve a desired formation configuration for all the agents subject to constant-speed constraints. Through a formation feasibility analysis by a three-agent example, we show that it...

متن کامل

Target Tracking via a Circular Formation of Unicycles

This paper deals with the problem of encircling a moving target with a fleet of unicycle-like vehicles. A new control law is developed to steer the vehicles to a circular formation whose center tracks the target. The novelty of this paper lies in the fact that the control law only uses the velocity of the target and the relative positions of the agents with respect to it, expressed in the local...

متن کامل

Coordinated Path Following for Mobile Robots

A control strategy for coordinated path following of multiple mobile robots is presented in this paper. A virtual vehicle concept is combined with a path following approach to achieve formation tasks. Our formation controller is proposed for the kinematic model of unicycle-type mobile robots. It is designed in such a way that the path derivative is employed as an additional control input to syn...

متن کامل

Distributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems

This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...

متن کامل

Experimental study of Hydraulic Flow of Circular Piano-Key Inlet in Shaft Spillways

One of the most important conflicts that shaft spillways have to deal with is vortex formation. This phenomenon leads to some unfavorable effects such as vibration in the body of structures, air entrainment and reduced overflow capacity of the spillway. Among all solutions for disrupted vortex formation, an innovative one called circular piano-key spillway, based upon piano key weir principles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018